transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Role of hexose transport in control of glycolytic flux in Saccharomyces cerevisiae

Författare och institution:
Karin Elbing (Institutionen för kemi och biovetenskap, Molekylär bioteknik, Chalmers); Christer Larsson (Institutionen för kemi och biovetenskap, Molekylär bioteknik, Chalmers); Roslyn M. Bill (-); Eva Albers (Institutionen för kemi och biovetenskap, Molekylär bioteknik, Chalmers); J. L. Snoep (-); E. Boles (-); Stefan Hohmann (Institutionen för cell- och molekylärbiologi); Lena Gustafsson (Institutionen för kemi och biovetenskap, Molekylär bioteknik, Chalmers)
Publicerad i:
Applied and Environmental Microbiology, 70 ( 9 ) s. 5323-5330
ISSN:
0099-2240
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2004
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
The yeast Saccharomyces cerevisiae predominantly ferments glucose to ethanol at high external glucose concentrations, irrespective of the presence of oxygen. In contrast, at low external glucose concentrations and in the presence of oxygen, as in a glucose-limited chemostat, no ethanol is produced. The importance of the external glucose concentration suggests a central role for the affinity and maximal transport rates of yeast's glucose transporters in the control of ethanol production. Here we present a series of strains producing functional chimeras between the hexose transporters Hxt1 and Hxt7, each of which has distinct glucose transport characteristics. The strains display a range of decreasing glycollytic rates resulting in a proportional decrease in ethanol production. Using these strains, we show for the first time that at high glucose levels, the glucose uptake capacity of wild-type S. cerevisiae does not control glycolytic flux during exponential batch growth. In contrast, our chimeric Hxt transporters control the rate of glycollysis to a high degree. Strains whose glucose uptake is mediated by these chimeric transporters will undoubtedly provide a powerful tool with which to examine in detail the mechanism underlying the switch between fermentation and respiration in S. cerevisiae and will provide new tools for the control of industrial fermentations.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Biologiska vetenskaper ->
Biokemi och molekylärbiologi ->
Cell- och molekylärbiologi ->
Molekylärbiologi
Nyckelord:
glucose-transport, chemostat cultures, hxt genes, catabolite repression, sugar transporters, yeast-cells, enzymes, growth, overexpression, metabolism
Postens nummer:
40215
Posten skapad:
2007-04-02 10:23
Posten ändrad:
2016-08-22 15:42

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007