transparent gif


Ej inloggad.

Göteborgs universitets publikationer

A numerical investigation of the stability of steady states and critical phenomena for the spherically symmetric Einstein–Vlasov system

Författare och institution:
Håkan Andréasson (Institutionen för matematiska vetenskaper, Chalmers/GU); Gerhared Rein (-)
Publicerad i:
Classical and Quantum Gravity, 23 s. 3659-3677
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
The stability features of steady states of the spherically symmetric Einstein–Vlasov system are investigated numerically. We find support for the conjecture by Zel'dovich and Novikov that the binding energy maximum along a steady state sequence signals the onset of instability, a conjecture which we extend to and confirm for non-isotropic states. The sign of the binding energy of a solution turns out to be relevant for its time evolution in general. We relate the stability properties to the question of universality in critical collapse and find that for Vlasov matter universality does not seem to hold.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Ytterligare information:
Electronic Journal Print publication: Issue 11 (7 June 2006)
Postens nummer:
Posten skapad:
2007-01-15 10:27
Posten ändrad:
2007-06-26 11:07

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007