transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Long-term dynamics of adaptive evolution in a globally important phytoplankton species to ocean acidification

Författare och institution:
L. Schluter (-); Kai T Lohbeck (Institutionen för marina vetenskaper); J. P. Groger (-); U. Riebesell (-); T. B. H. Reusch (-)
Publicerad i:
Science Advances, 2 ( 7 )
ISSN:
2375-2548
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
Marine phytoplankton may adapt to ocean change, such as acidification or warming, because of their large population sizes and short generation times. Long-term adaptation to novel environments is a dynamic process, and phenotypic change can take place thousands of generations after exposure to novel conditions. We conducted a long-term evolution experiment (4 years = 2100 generations), starting with a single clone of the abundant and widespread coccolithophore Emiliania huxleyi exposed to three different CO2 levels simulating ocean acidification (OA). Growth rates as a proxy for Darwinian fitness increased only moderately under both levels of OA [+3.4% and +4.8%, respectively, at 1100 and 2200 matm partial pressure of CO2 (PCO2)] relative to control treatments (ambient CO2, 400 matm). Long-term adaptation to OA was complex, and initial phenotypic responses of ecologically important traits were later reverted. The biogeochemically important trait of calcification, in particular, that had initially been restored within the first year of evolution was later reduced to levels lower than the performance of nonadapted populations under OA. Calcification was not constitutively lost but returned to control treatment levels when high CO2-adapted isolates were transferred back to present-day control CO2 conditions. Selection under elevated CO2 exacerbated a general decrease of cell sizes under long-term laboratory evolution. Our results show that phytoplankton may evolve complex phenotypic plasticity that can affect biogeochemically important traits, such as calcification. Adaptive evolution may play out over longer time scales (>1 year) in an unforeseen way under future ocean conditions that cannot be predicted from initial adaptation responses.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Geovetenskap och miljövetenskap
Nyckelord:
emiliania-huxleyi, phenotypic plasticity, beneficial mutations, marine-phytoplankton, escherichia-coli, adaptation, responses, calcification, biomineralization, coccolithophores, Science & Technology - Other Topics
Postens nummer:
242035
Posten skapad:
2016-09-20 13:09

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007