transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Phase transition temperatures of 405-725 K in superfluid ultra-dense hydrogen clusters on metal surfaces

Författare och institution:
Leif Holmlid (Institutionen för kemi och molekylärbiologi); B. Kotzias (-)
Publicerad i:
Aip Advances, 6 ( 4 )
ISSN:
2158-3226
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
Ultra-dense hydrogen H(0) with its typical H-H bond distance of 2.3 pm is superfluid at room temperature as expected for quantum fluids. It also shows a Meissner effect at room temperature, which indicates that a transition point to a non-superfluid state should exist above room temperature. This transition point is given by a disappearance of the superfluid long-chain clusters H-2N(0). This transition point is now measured for several metal carrier surfaces at 405 - 725 K, using both ultra-dense protium p(0) and deuterium D(0). Clusters of ordinary Rydberg matter H(l) as well as small symmetric clusters H-4(0) and H-3(0) (which do not give a superfluid or superconductive phase) all still exist on the surface at high temperature. This shows directly that desorption or diffusion processes do not remove the long superfluid H-2N(0) clusters. The two ultra-dense forms p(0) and D(0) have different transition temperatures under otherwise identical conditions. The transition point for p(0) is higher in temperature, which is unexpected. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Fysik
Nyckelord:
rydberg matter, coulomb explosions, deuterium, catalyst, styrene, energy, Science & Technology - Other Topics, Materials Science, Physics
Postens nummer:
240762
Posten skapad:
2016-08-25 14:59

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007