transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Ergodic, primal convergence in dual subgradient schemes for convex programming, II: the case of inconsistent primal problems

Författare och institution:
Magnus Önnheim (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Emil Gustavsson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Ann-Brith Strömberg (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Michael Patriksson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Torbjörn Larsson (-)
Publicerad i:
Mathematical programming,
ISSN:
0025-5610
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):

Consider the utilization of a Lagrangian dual method which is convergent for consistent optimization problems. When it is used to solve an infeasible optimization problem, its inconsistency will then manifest itself through the divergence of the sequence of dual iterates. Will then the sequence of primal subproblem solutions still yield relevant information regarding the primal program? We answer this question in the affirmative for a convex program and an associated subgradient algorithm for its Lagrange dual.

We show that the primal–dual pair of programs corresponding to an associated homogeneous dual function is in turn associated with a saddle-point problem, in which—in the inconsistent case—the primal part amounts to finding a solution in the primal space such that the Euclidean norm of the infeasibility in the relaxed constraints is minimized; the dual part amounts to identifying a feasible steepest ascent direction for the Lagrangian dual function.

We present convergence results for a conditional ε-subgradient optimization algorithm applied to the Lagrangian dual problem, and the construction of an ergodic sequence of primal subproblem solutions; this composite algorithm yields convergence of the primal–dual sequence to the set of saddle-points of the associated homogeneous Lagrangian function; for linear programs, convergence to the subset in which the primal objective is at minimum is also achieved.

Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik ->
Optimeringslära, systemteori
Nyckelord:
inconsistent convex program, Lagrange dual, homogeneous Lagrangian function, subgradient algorithm, ergodic primal sequence
Chalmers styrkeområden:
Energi
Transport
Chalmers fundament:
Grundläggande vetenskaper
Chalmers drivkrafter:
Hållbar utveckling
Postens nummer:
238192
Posten skapad:
2016-06-23 11:58
Posten ändrad:
2016-07-08 12:16

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007