transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations

Författare och institution:
Larisa Beilina (Institutionen för matematiska vetenskaper, Chalmers/GU); Samar Hosseinzadegan (Institutionen för signaler och system, Biomedicinsk elektromagnetik, Chalmers)
Publicerad i:
Applications of Mathematics, 61 ( 3 ) s. 253-286
ISSN:
0862-7940
E-ISSN:
1572-9109
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Maxwell's system, coefficient inverse problem, Tikhonov functional, Lagrangian approach, a posteriori error estimate
Postens nummer:
238137
Posten skapad:
2016-06-22 17:06
Posten ändrad:
2016-06-27 12:41

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007