transparent gif


Ej inloggad.

Göteborgs universitets publikationer

A randomized trial of cold-exposure on energy expenditure and supraclavicular brown adipose tissue volume in humans

Författare och institution:
T. Romu (-); C. Vavruch (-); O. Dahlqvist-Leinhard (-); J. Tallberg (-); N. Dahlstrom (-); A. Persson (-); Mikael Heglind (Institutionen för biomedicin, avdelningen för medicinsk genetik och klinisk genetik); M. E. Lidell (Institutionen för biomedicin, avdelningen för medicinsk genetik och klinisk genetik); Sven Enerbäck (Institutionen för biomedicin, avdelningen för medicinsk genetik och klinisk genetik); M. Borga (-); F. H. Nystrom (-)
Publicerad i:
Metabolism-Clinical and Experimental, 65 ( 6 ) s. 926-934
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
Objective. To study if repeated cold-exposure increases metabolic rate and/or brown adipose tissue (BAT) volume in humans when compared with avoiding to freeze. Design. Randomized, open, parallel-group trial. Methods. Healthy non-selected participants were randomized to achieve cold-exposure 1 hour/day, or to avoid any sense of feeling cold, for 6 weeks. Metabolic rate (MR) was measured by indirect calorimetry before and after acute cold-exposure with cold vests and ingestion of cold water. The BAT volumes in the supraclavicular region were measured with magnetic resonance imaging (MRI). Results. Twenty-eight participants were recruited, 12 were allocated to controls and 16 to cold-exposure. Two participants in the cold group dropped out and one was excluded. Both the non-stimulated and the cold-stimulated MR were lowered within the group randomized to avoid cold (MR at room temperature from 1841 +/- 199 kCal/24 h to 1795 +/- 213 kCal/24 h, p = 0.047 cold-activated MR from 1900 +/- 150 kCal/24 h to 1793 +/- 215 kCal/24 h, p = 0.028). There was a trend towards increased MR at room temperature following the intervention in the cold-group (p = 0.052). The difference between MR changes by the interventions between groups was statistically significant (p = 0.008 at room temperature, p = 0.032 after cold-activation). In an on-treatment analysis after exclusion of two participants that reported >= 8 days without cold-exposure, supraclavicular BAT volume had increased in the cold-exposure group (from 0.0175 +/- 0.015 1 to 0.0216 +/- 0.014 1, p = 0.049). Conclusions. We found evidence for plasticity in metabolic rate by avoiding to freeze compared with cold-exposure in a randomized setting in non-selected humans.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Klinisk medicin
Brown adipose tissue, Cold exposure, Magnetic resonance imaging, Metabolic rate, water-fat mri, healthy humans, adult humans, identification, metabolism, Endocrinology & Metabolism
Postens nummer:
Posten skapad:
2016-06-17 15:07

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007