transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Isoperimetric inequalities for Schatten norms of Riesz potentials

Författare och institution:
Grigori Rozenblioum (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); M. Ruzhansky (-); D. Suragan (-)
Publicerad i:
Journal of Functional Analysis, 271 ( 1 ) s. 224-239
ISSN:
0022-1236
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Fulltextlänk (lokalt arkiv):
Sammanfattning (abstract):
In this note we prove that the ball is a maximiser for integer order Schatten p-norms of the Riesz potential operators among all domains of a given measure in R-d. In particular, the result is valid for the polyharmonic Newton potential operator, which is related to a nonlocal boundary value problem for the poly-Laplacian extending the one considered by M. Kac in the case of the Laplacian, so we obtain isoperimetric inequalities for its eigenvalues as well, namely, analogues of Rayleigh-Faber-Krahn. and Hong-Krahn-Szego inequalities.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Riesz potential, Schatten p-norm, Rayleigh-Faber-Krahn inequality, Hong-Krahn-Szego inequality
Postens nummer:
237869
Posten skapad:
2016-06-17 14:20
Posten ändrad:
2016-07-05 15:44

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007