transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Permanental Point Processes on Real Tori

Författare och institution:
Jakob Hultgren (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Antal sidor:
78
Publikationstyp:
Licentiatavhandling
Förlag:
Chalmers University of Technology
Förlagsort:
Göteborg
Publiceringsår:
2016
Språk:
engelska
Datum för examination:
2016-02-11
Tidpunkt för examination:
13:15
Lokal:
Room Euler, Mathematical Sciences, Chalmers Tvärgata 3, Chalmers
Opponent:
Professor Mattias Jonsson, University of Michigan, US.
Sammanfattning (abstract):
The main motivation for this thesis is to study real Monge-Ampère equations. These are fully nonlinear differential equations that arise in differential geometry. They lie at the heart of optimal transport and, as such, are related to probability theory, statistics, geometrical inequalities, fluid dynamics and diffusion equations. In this thesis we set up and study a thermodynamic formalism for a certain type of Monge-Ampère equations on real tori. We define a family of permanental point processes and show that their asymptotic behavior (when the number of particles tends infinity) is governed by Monge-Ampère equations.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Matematisk analys
NATURVETENSKAP ->
Matematik ->
Geometri
NATURVETENSKAP ->
Matematik ->
Sannolikhetsteori och statistik
Nyckelord:
Point Processes, Monge-Ampère equations, Affine Manifolds
Chalmers fundament:
Grundläggande vetenskaper
Postens nummer:
236658
Posten skapad:
2016-05-18 10:34
Posten ändrad:
2016-05-18 15:48

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007