transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Towards benchmarking feature subset selection methods for software fault prediction

Författare och institution:
W. Afzal (-); Richard Torkar (Institutionen för data- och informationsteknik (GU))
Publicerad i:
Studies in Computational Intelligence,
Publikationstyp:
Kapitel
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
© Springer International Publishing Switzerland 2016. Despite the general acceptance that software engineering datasets often contain noisy, irrelevant or redundant variables, very few benchmark studies of feature subset selection (FSS) methods on real-life data from software projects have been conducted. This paper provides an empirical comparison of state-of-the-art FSS methods: information gain attribute ranking (IG); Relief (RLF); principal component analysis (PCA); correlation-based feature selection (CFS); consistencybased subset evaluation (CNS); wrapper subset evaluation (WRP); and an evolutionary computation method, genetic programming (GP), on five fault prediction datasets from the PROMISE data repository. For all the datasets, the area under the receiver operating characteristic curve—the AUC value averaged over 10-fold cross-validation runs—was calculated for each FSS method-dataset combination before and after FSS. Two diverse learning algorithms, C4.5 and naïve Bayes (NB) are used to test the attribute sets given by each FSS method. The results show that although there are no statistically significant differences between the AUC values for the different FSS methods for both C4.5 and NB, a smaller set of FSS methods (IG, RLF, GP) consistently select fewer attributes without degrading classification accuracy. We conclude that in general, FSS is beneficial as it helps improve classification accuracy of NB and C4.5. There is no single best FSS method for all datasets but IG, RLF and GP consistently select fewer attributes without degrading classification accuracy within statistically significant boundaries.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Data- och informationsvetenskap
Nyckelord:
Empirical , Fault prediction , Feature subset selection
Postens nummer:
236413
Posten skapad:
2016-05-12 12:12
Posten ändrad:
2016-09-20 16:50

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007