transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Bergman Geodesics

Författare och institution:
Robert Berman (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Julien Keller (-)
Publicerad i:
Lecture notes in mathematics, 2038 s. 283-302
ISSN:
0075-8434
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2012
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
The aim of this survey is to review the results of Phong-Sturm and Berndtsson on the convergence of Bergman geodesics towards geodesic segments in the space of positively curved metrics on an ample line bundle. As previously shown by Mabuchi, Semmes and Donaldson the latter geodesics may be described as solutions to the Dirichlet problem for a homogeneous complex Monge-Ampere equation. We emphasize in particular the relation between the convergence of the Bergman geodesics and semi-classical asymptotics for Berezin-Toeplitz quantization. Some extension to Wess-Zumino-Witten type equations are also briefly discussed.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Ytterligare information:
Lecture notes in mathematics vol 2038: Complex Monge–Ampère Equations and Geodesics in the Space of Kähler Metrics. Guedj, Vincent (Ed.)
Postens nummer:
235910
Posten skapad:
2016-05-04 11:10

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007