transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Classification of quantum groups and Lie bialgebra structures on sl(n, F). Relations with Brauer group

Författare och institution:
Alexander Stolin (Institutionen för matematiska vetenskaper, Chalmers/GU); Iulia Pop (Institutionen för matematiska vetenskaper, Chalmers/GU)
Publicerad i:
Advances in Mathematics, 293 s. 324-342
ISSN:
0001-8708
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
Given an arbitrary field F of characteristic 0, we study Lie bialgebra structures on sl(n,F), based on the description of the corresponding classical double. For any Lie bialgebra structure.5, the classical double D(sl(n, F), delta) is isomorphic to sl(n,F) circle times(F) A, where A is either F[epsilon], with epsilon(2) = 0, or F circle plus F or a quadratic field extension of F. In the first case, the classification leads to quasi-Frobenius Lie subalgebras of sl(n,F). In the second and third cases, a Belavin-Drinfeld cohomology can be introduced which enables one to classify Lie bialgebras on sl(n,F), up to gauge equivalence. The Belavin Drinfeld untwisted and twisted cohomology sets associated to an r-matrix are computed. For the Cremmer-Gervais r-matrix in sl(3), we also construct a natural map of sets between the total Belavin-Drinfeld twisted cohomology set and the Brauer group of the field F.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Quantum group, Lie bialgebra, Classical double, r-matrix, Admissible triple, Quadratic field, Brauer, algebras, Mathematics
Postens nummer:
235220
Posten skapad:
2016-04-26 13:08
Posten ändrad:
2016-06-02 16:38

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007