transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Homodyne-detected ferromagnetic resonance of in-plane magnetized nanocontacts: Composite spin-wave resonances and their excitation mechanism

Författare och institution:
M. Fazlali (Institutionen för fysik (GU)); Mykola Dvornik (Institutionen för fysik (GU)); Ezio Iacocca (Institutionen för fysik, Teoretisk fysik (Chalmers), Chalmers); Philipp Dürrenfeld (Institutionen för fysik (GU)); Mohammad Haidar (Institutionen för fysik (GU)); Johan Åkerman (Institutionen för fysik (GU)); Randy K. Dumas (Institutionen för fysik (GU))
Publicerad i:
Physical Review B. Condensed Matter and Materials Physics, 93 s. 134427
ISSN:
1098-0121
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Fulltextlänk (lokalt arkiv):
Sammanfattning (abstract):
This work provides a detailed investigation of the measured in-plane field-swept homodyne-detected ferromagnetic resonance (FMR) spectra of an extended Co/Cu/NiFe pseudo-spin-valve stack using a nanocontact (NC) geometry. The magnetodynamics are generated by a pulse-modulated microwave current, and the resulting rectified dc mixing voltage, which appears across the NC at resonance, is detected using a lock-in amplifier. Most notably, we find that the measured spectra of the NiFe layer are composite in nature and highly asymmetric, consistent with the broadband excitation of multiple modes. Additionally, the data must be fit with two Lorentzian functions in order to extract a reasonable value for the Gilbert damping of the NiFe. Aided by micromagnetic simulations, we conclude that (i) for in-plane fields the rf Oersted field in the vicinity of the NC plays the dominant role in generating the observed spectra, (ii) in addition to the FMR mode, exchange-dominated spin waves are also generated, and (iii) the NC diameter sets the mean wave vector of the exchange-dominated spin wave, in good agreement with the dispersion relation.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Fysik ->
Den kondenserade materiens fysik ->
Magnetism
TEKNIK OCH TEKNOLOGIER ->
Elektroteknik och elektronik ->
Annan elektroteknik och elektronik ->
Övrig elektroteknik, elektronik och fotonik
TEKNIK OCH TEKNOLOGIER ->
Nanoteknik
Projekt:
Magnonics Using Spin Torque, spin caloritronics, And Nanoplasmonic engineerinG (MUSTANG) (EC/FP7/307144)
Postens nummer:
235199
Posten skapad:
2016-04-26 10:10
Posten ändrad:
2016-07-05 14:46

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007