transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Rough metrics on manifolds and quadratic estimates

Författare och institution:
Lashi Bandara (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Mathematische Zeitschrift, 283 ( 3 ) s. 1245–1281
ISSN:
0025-5874
E-ISSN:
1432-1823
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We study the persistence of quadratic estimates related to the Kato square root problem across a change of metric on smooth manifolds by defining a class of “rough” Riemannian-like metrics that are permitted to be of low regularity and degenerate on sets of measure zero. We also demonstrate how to transmit quadratic estimates between manifolds which are homeomorphic and locally bi-Lipschitz. As a consequence, we demonstrate the invariance of the Kato square root problem under Lipschitz transformations and obtain solutions to this problem on functions and forms on compact manifolds with a rough metric. Furthermore, we show that a lower bound on the injectivity radius is not a necessary condition to solve the Kato square root problem.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Matematisk analys
NATURVETENSKAP ->
Matematik ->
Geometri
Nyckelord:
Rough metrics, Quadratic estimates, Kato square root problem
Postens nummer:
233976
Posten skapad:
2016-04-01 13:47
Posten ändrad:
2016-08-26 15:37

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007