transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Discriminants and Artin conductors

Författare och institution:
Dennis Eriksson (Institutionen för matematiska vetenskaper, Chalmers/GU)
Publicerad i:
Journal Fur Die Reine Und Angewandte Mathematik, 712 s. 107-121
ISSN:
0075-4102
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We study questions of multiplicities of discriminants for degenerations coming from projective duality over discrete valuation rings. The main observation is a type of discriminant-different formula in the sense of classical algebraic number theory, and we relate it to Artin conductors via Bloch's conjecture. In the case of discriminants of planar curves we can calculate the different precisely. In general these multiplicities encode topological invariants of the singular fibers and in the case of characteristic p, also wild ramification data in the form of Swan conductors. This builds upon results of T. Saito.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
arithmetic surfaces, elliptic curves, dual varieties, multiplicities, singularities, formula, Mathematics, te jt, 1974, inventiones mathematicae, v23, p179
Postens nummer:
233406
Posten skapad:
2016-03-18 11:57
Posten ändrad:
2016-07-08 13:17

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007