transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

An evaluation of gas transfer velocity parameterizations during natural convection using DNS

Författare och institution:
Sam Fredriksson (Institutionen för marina vetenskaper); Lars Arneborg (Institutionen för marina vetenskaper); Håkan Nilsson (Institutionen för tillämpad mekanik, Strömningslära, Chalmers); Qi Zhang (-); Robert Handler (-)
Publicerad i:
Journal of Geophysical Research - Oceans, 121 ( 2 ) s. 1400-1423
ISSN:
0148-0227
E-ISSN:
2156-2202
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Fulltextlänk (lokalt arkiv):
Sammanfattning (abstract):
Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, k(s) = A (Bv)(1/4) Sc2(n), where A is a constant, B is the buoyancy flux, m is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A = 0.39 and n approximate to 1/2 and n approximate to 2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Geovetenskap och miljövetenskap ->
Klimatforskning
NATURVETENSKAP ->
Geovetenskap och miljövetenskap ->
Oceanografi, hydrologi, vattenresurser ->
Oceanografi
Nyckelord:
air-sea gas exchange, turbulence, heat flux, natural convection, direct numerical simulations, gas transfer velocity, surface cooling
Chalmers fundament:
Grundläggande vetenskaper
Chalmers drivkrafter:
Hållbar utveckling
Chalmers forskningsinfrastruktur:
C3SE/SNIC (Chalmers Centre for Computational Science and Engineering)
Postens nummer:
233031
Posten skapad:
2016-03-10 14:35
Posten ändrad:
2016-06-20 11:26

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007