transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Connectedness of Poisson cylinders in Euclidean space

Författare och institution:
Erik Broman (-); Johan Tykesson (Institutionen för matematiska vetenskaper, matematisk statistik, Chalmers/GU)
Publicerad i:
Annales De L Institut Henri Poincare-Probabilites Et Statistiques, 52 ( 1 ) s. 102-126
ISSN:
0246-0203
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2016
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We consider the Poisson cylinder model in R-d, d >= 3. We show that given any two cylinders c(1) and c(2) in the process, there is a sequence of at most d - 2 other cylinders creating a connection between c(1) and c(2). In particular, this shows that the union of the cylinders is a connected set, answering a question appearing in (Probab. Theory Related Fields 154 (2012) 165-191). We also show that there are cylinders in the process that are not connected by a sequence of at most d - 3 other cylinders. Thus, the diameter of the cluster of cylinders equals d - 2.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Poisson cylinder model, Continuum percolation
Postens nummer:
232142
Posten skapad:
2016-02-17 14:49
Posten ändrad:
2016-06-30 08:05

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007