transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Segre numbers, a generalized King formula, and local intersections

Författare och institution:
Mats Andersson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Håkan Samuelsson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Elizabeth Wulcan (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Alain Yger (-)
Publicerad i:
Journal für die Reine und Angewandte Mathematik, Epub ahead of print
ISSN:
0075-4102
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2015
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
Let $\mathcal{J}$ be an ideal sheaf on a reduced analytic space $X$ with zero set $Z$. We show that the Lelong numbers of the restrictions to $Z$ of certain generalized Monge– Ampère products $(dd^c \log |f|^2)^k$, where $f$ is a tuple of generators of $\mathcal{J}$, coincide with the so-called Segre numbers of $\mathcal{J}$, introduced independently by Tworzewski, Achilles–Manaresi, and Gaffney–Gassler. More generally we show that these currents satisfy a generalization of the classical King formula that takes into account fixed and moving components of Vogel cycles associated with $\mathcal{J}$. A basic tool is a new calculus for products of positive currents of Bochner–Martinelli type. We also discuss connections to intersection theory.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
NATURVETENSKAP ->
Matematik ->
Matematisk analys
NATURVETENSKAP ->
Matematik ->
Geometri
Ytterligare information:
http://arxiv.org/abs/1009.2458
Postens nummer:
227957
Posten skapad:
2015-12-11 09:51
Posten ändrad:
2016-04-28 09:57

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007