transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Convergence analysis for Backward-Euler and mixed discontinuous Galerkin methods for the Vlasov-Poisson system .

Författare och institution:
Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Piotr Kowalczyk (-)
Publicerad i:
Advances in Computational Mathematics, 41 ( 4 ) s. 833-852
ISSN:
1019-7168
E-ISSN:
1572-9044
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2015
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We construct and analyze a numerical scheme for the two-dimensional Vlasov-Poisson system based on a backward-Euler (BE) approximation in time combined with a mixed finite element method for a discretization of the Poisson equation in the spatial domain and a discontinuous Galerkin (DG) finite element approximation in the phase-space variables for the Vlasov equation. We prove the stability estimates and derive the optimal convergence rates depending upon the compatibility of the finite element meshes, used for the discretizations of the spatial variable in Poisson (mixed) and Vlasov (DG) equations, respectively. The error estimates for the Poisson equation are based on using Brezzi-Douglas-Marini (BDM) elements in L 2 and H −s , s>0, norms.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Chalmers fundament:
Grundläggande vetenskaper
Postens nummer:
226410
Posten skapad:
2015-11-26 14:22
Posten ändrad:
2016-07-07 13:47

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007