transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Quantum deformed Richardson-Gaudin model

Författare och institution:
Henrik Johannesson (Institutionen för fysik (GU)); Alexander Stolin (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Petr Kulish (-)
Publicerad i:
Progress in Electromagnetics Research Symposium, PIERS 2013 Stockholm, s. 789-793
ISBN:
978-19-34-14226-4
ISSN:
1559-9450
Publikationstyp:
Konferensbidrag, refereegranskat
Publiceringsår:
2013
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
The Richardson-Gaudin model describes strong pairing correlations of fermions confined to a finite chain. The integrability of the Hamiltonian allows for its eigenstates to be constructed algebraically. In this work, we show that quantum group theory provides a possibility to deform the Hamiltonian preserving integrability. More precisely, we use the so-called Jordanian r-matrix to deform the Hamiltonian of the Richardson-Gaudin model. In order to preserve its integrability, we need to insert a special nilpotent term into the auxiliary L-operator which generates integrals of motion of the system. Moreover, the quantum inverse scattering method enables us to construct the exact eigenstates of the deformed Hamiltonian. These states have a highly complex entanglement structure which require further investigation.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
NATURVETENSKAP ->
Fysik
Nyckelord:
Eigenstates; Finite chains; Integrability; Integrals of motion; Inverse scattering methods; Nilpotent; Pairing correlations; Quantum groups
Postens nummer:
225040
Posten skapad:
2015-10-29 14:19
Posten ändrad:
2016-05-09 16:13

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007