transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Wythoff nim extensions and splitting sequences

Författare och institution:
Urban Larsson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Journal of Integer Sequences, 17 ( 5 ) s. artikel 14.5.7
ISSN:
1530-7638
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2014
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We study extensions of the classical impartial combinatorial game of Wythoff Nim. The games are played on two heaps of tokens, and have symmetric move options, so that, for any integers 0 ≤ x ≤ y, the outcome of the upper position (x, y) is identical to that of (y, x). First we prove that Φ-1 = 2/1+√5 is a lower bound for the lower asymptotic density of the x-coordinates of a given game’s upper P-positions. The second result concerns a subfamily, called a Generalized Diagonal Wythoff Nim, recently introduced by Larsson. A certain split of P-positions, distributed in a number of so-called P- beams, was conjectured for many such games. The term split here means that an infinite sector of upper positions is void of P-positions, but with infinitely many upper P-positions above and below it. By using the first result, we prove this conjecture for one of these games, called (1, 2)-GDWN, where a player moves as in Wythoff Nim, or instead chooses to remove a positive number of tokens from one heap and twice that number from the other.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Combinatorial game, Complementary sequence, Golden ratio, Impartial game, Integer sequence, Lower asymptotic density, Splitting sequence, Wythoff nim
Postens nummer:
221159
Posten skapad:
2015-08-25 13:03
Posten ändrad:
2016-08-22 08:56

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007