transparent gif


Ej inloggad.

Göteborgs universitets publikationer

Structural modeling of tissue-specific mitochondrial alanyl-tRNA synthetase (AARS2) defects predicts differential effects on aminoacylation

Författare och institution:
L. Euro (-); S. Konovalova (-); Jorge Asin-Cayuela (Institutionen för biomedicin, avdelningen för klinisk kemi och transfusionsmedicin); Mar Tulinius (Institutionen för kliniska vetenskaper, sektionen för kvinnors och barns hälsa, Avdelningen för pediatrik); H. Griffin (-); R. Horvath (-); R. W. Taylor (-); P. F. Chinnery (-); U. Schara (-); D. R. Thorburn (-); A. Suomalainen (-); J. Chihade (-); H. Tyynismaa (-)
Publicerad i:
Frontiers in Genetics, 5 ( FEB )
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
The accuracy of mitochondrial protein synthesis is dependent on the coordinated action of nuclear-encoded mitochondrial aminoacyl-tRNA synthetases (mtARSs) and the mitochondrial DNA-encoded tRNAs. The recent advances in whole-exome sequencing have revealed the importance of the mtARS proteins for mitochondrial pathophysiology since nearly every nuclear gene for mtARS (out of 19) is now recognized as a disease gene for mitochondrial disease. Typically, defects in each mtARS have been identified in one tissue-specific disease, most commonly affecting the brain, or in one syndrome. However, mutations in the AARS2 gene for mitochondrial alanyl-tRNA synthetase (mtAlaRS) have been reported both in patients with infantile-onset cardiomyopathy and in patients with childhood to adulthood-onset leukoencephalopathy. We present here an investigation of the effects of the described mutations on the structure of the synthetase, in an effort to understand the tissue-specific outcomes of the different mutations. The mtAlaRS differs from the other mtARSs because in addition to the aminoacylation domain, it has a conserved editing domain for deacylating tRNAs that have been mischarged with incorrect amino acids. We show that the cardiomyopathy phenotype results from a single allele, causing an amino acid change R592W in the editing domain of AARS2, whereas the leukodystrophy mutations are located in other domains of the synthetase. Nevertheless, our structural analysis predicts that all mutations reduce the aminoacylation activity of the synthetase, because all mtAlaRS domains contribute to tRNA binding for aminoacylation. According to our model, the cardiomyopathy mutations severely compromise aminoacylation whereas partial activity is retained by the mutation combinations found in the leukodystrophy patients. These predictions provide a hypothesis for the molecular basis of the distinct tissue-specific phenotypic outcomes.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Medicinska grundvetenskaper ->
Medicinsk genetik
Alanyl-tRNA synthetase, Aminoacyl-tRNA synthetases, Mitochondrial disease, Structural modeling, Tissue-specificity
Postens nummer:
Posten skapad:
2015-03-19 13:22
Posten ändrad:
2015-03-24 09:12

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007