transparent gif


Ej inloggad.

Göteborgs universitets publikationer

Two-photon fluorescence imaging and bimodal phototherapy of epidermal cancer cells with biocompatible self-assembled polymer nanoparticles

Författare och institution:
N. Kandoth (-); Vladimir Kirejev (Institutionen för kemi och molekylärbiologi); S. Monti (-); R. Gref (-); Marica B Ericson (Institutionen för kemi och molekylärbiologi); S. Sortino (-)
Publicerad i:
Biomacromolecules, 15 ( 5 ) s. 1768-1776
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
We have developed herein an engineered polymer-based nanoplatform showing the convergence of two-photon fluorescence imaging and bimodal phototherapeutic activity in a single nanostructure. It was achieved through the appropriate choice of three different components: a β-cyclodextrin-based polymer acting as a suitable carrier, a zinc phthalocyanine emitting red fluorescence simultaneously as being a singlet oxygen (1O2) photosensitizer, and a tailored nitroaniline derivative, functioning as a nitric oxide (NO) photodonor. The self-assembly of these components results in photoactivable nanoparticles, approximately 35 nm in diameter, coencapsulating a multifunctional cargo, which can be delivered to carcinoma cells. The combination of steady-state and time-resolved spectroscopic and photochemical techniques shows that the two photoresponsive guests do not interfere with each other while being enclosed in their supramolecular container and can thus be operated in parallel under control of light stimuli. Specifically, two-photon fluorescence microscopy allows mapping of the nanoassembly, here applied to epidermal cancer cells. By detecting the red emission from the phthalocyanine fluorophore it was also possible to investigate the tissue distribution after topical delivery onto human skin ex vivo. Irradiation of the nanoassembly with visible light triggers the simultaneous delivery of cytotoxic 1O 2 and NO, resulting in an amplified cell photomortality due to a combinatory effect of the two cytotoxic agents. The potential of dual therapeutic photodynamic action and two-photon fluorescence imaging capability in a single nanostructure make this system an appealing candidate for further studies in biomedical research. © 2014 American Chemical Society.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Kemi ->
Fysikalisk kemi
Kemi ->
Biologiska vetenskaper ->
Postens nummer:
Posten skapad:
2015-02-10 10:29

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007