transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Green functions, Segre numbers, and King’s formula

Författare och institution:
Mats Andersson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Elizabeth Wulcan (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Annales de l'Institut Fourier, 64 ( 6 ) s. 2639-2657
ISSN:
0373-0956
E-ISSN:
1777-5310
Publikationstyp:
Artikel, refereegranskad vetenskaplig
PubliceringsÄr:
2014
SprÄk:
engelska
FulltextlÀnk:
Sammanfattning (abstract):
Let đ’„ be a coherent ideal sheaf on a complex manifold X with zero set Z, and let G be a plurisubharmonic function such that G=log|f|+đ’Ș(1) locally at Z, where f is a tuple of holomorphic functions that defines đ’„. We give a meaning to the Monge-AmpĂšre products (dd c G) k for k=0,1,2,..., and prove that the Lelong numbers of the currents M k đ’„ :=1 Z (dd c G) k at x coincide with the so-called Segre numbers of J at x, introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that M k đ’„ satisfy a certain generalization of the classical King formula.
Ämne (baseras pĂ„ Högskoleverkets indelning av forskningsĂ€mnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Green function; Segre numbers; Monge-Ampere products; King's formula
Chalmers fundament:
GrundlÀggande vetenskaper
Postens nummer:
209686
Posten skapad:
2015-01-06 17:01
Posten Àndrad:
2016-04-28 09:57

Visa i Endnote-format

Göteborgs universitet ‱ Tel. 031-786 0000
© Göteborgs universitet 2007