transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Globally convergent and adaptive finite element methods in imaging of buried objects from experimental backscattering radar measurements

Författare och institution:
Larisa Beilina (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Nguyen Trung Thanh (-); M.V. Klibanov (-); John Bondestam Malmberg (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Journal of Computational and Applied Mathematics, 289 s. 371-391
ISSN:
0377-0427
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2015
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We consider a two-stage numerical procedure for imaging of objects buried in dry sand using time-dependent backscattering experimental radar measurements. These measurements are generated by a single point source of electric pulses and are collected using a microwave scattering facility which was built at the University of North Carolina at Charlotte. Our imaging problem is formulated as the inverse problem of the reconstruction of the spatially distributed dielectric constant, which is an unknown coefficient in Maxwell’s equations.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Inverse scattering; Refractive indices; Globally convergent algorithm; Adaptive finite element method
Postens nummer:
209179
Posten skapad:
2014-12-29 17:53
Posten ändrad:
2016-06-27 14:31

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007