transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Globally strongly convex cost functional for a coefficient inverse problem

Författare och institution:
Larisa Beilina (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); M. V. Klibanov (-)
Publicerad i:
Nonlinear Analysis, 22 s. 272-288
ISSN:
1468-1218
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2015
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
A Carleman Weight Function (CWF) is used to construct a new cost functional for a Coefficient Inverse Problems for a hyperbolic PDE. Given a bounded set of an arbitrary size in a certain Sobolev space, one can choose the parameter of the CWF in such a way that the constructed cost functional will be strongly convex on that set. Next, convergence of the gradient method, which starts from an arbitrary point of that set, is established. Since restrictions on the size of that set are not imposed, then this is the global convergence.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Postens nummer:
209175
Posten skapad:
2014-12-29 17:41
Posten ändrad:
2016-06-27 14:31

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007