transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Explicit Serre duality on complex spaces

Författare och institution:
Håkan Samuelsson (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Elizabeth Wulcan (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Jean Ruppenthal (-)
Antal sidor:
28
Publikationstyp:
Rapport
Publiceringsår:
2014
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
In this paper we use recently developed calculus of residue currents together with integral formulas to give a new explicit analytic realization, as well as a new analytic proof of Serre duality on any reduced pure n-dimensional paracompact complex space X. At the core of the paper is the introduction of concrete fine sheaves A^{n,q}_X of certain currents on X of bidegree (n,q), such that the associatd Dolbeault complex becomes, in a certain sense, a dualizing complex. In particular, if X is Cohen-Macaulay (e.g., Gorenstein or a complete intersection) then this Dolbeault complex is an explicit fine resolution of the Grothendieck dualizing sheaf.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
NATURVETENSKAP ->
Matematik ->
Matematisk analys
NATURVETENSKAP ->
Matematik ->
Geometri
Postens nummer:
207361
Posten skapad:
2014-12-04 13:28
Posten ändrad:
2016-04-28 09:57

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007