transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Selecting software reliability growth models and improving their predictive accuracy using historical projects data

Författare och institution:
Rakesh Rana (Institutionen för data- och informationsteknik (GU)); Miroslaw Staron (Institutionen för data- och informationsteknik (GU)); Christian Berger (Institutionen för data- och informationsteknik (GU)); Jörgen Hansson (Institutionen för data- och informationsteknik, Software Engineering (Chalmers), Chalmers); M. Nilsson (-); F. Torner (-); W. Meding (-); C. Hoglund (-)
Publicerad i:
Journal of Systems and Software, 98 s. 59-78
ISSN:
0164-1212
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2014
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
During software development two important decisions organizations have to make are: how to allocate testing resources optimally and when the software is ready for release. SRGMs (software reliability growth models) provide empirical basis for evaluating and predicting reliability of software systems. When using SRGMs for the purpose of optimizing testing resource allocation, the model's ability to accurately predict the expected defect inflow profile is useful. For assessing release readiness, the asymptote accuracy is the most important attribute. Although more than hundred models for software reliability have been proposed and evaluated over time, there exists no clear guide on which models should be used for a given software development process or for a given industrial domain. Using defect inflow profiles from large software projects from Ericsson, Volvo Car Corporation and Saab, we evaluate commonly used SRGMs for their ability to provide empirical basis for making these decisions. We also demonstrate that using defect intensity growth rate from earlier projects increases the accuracy of the predictions. Our results show that Logistic and Gompertz models are the most accurate models; we further observe that classifying a given project based on its expected shape of defect inflow help to select the most appropriate model. (C) 2014 Elsevier Inc. All rights reserved.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
TEKNIK OCH TEKNOLOGIER ->
Elektroteknik och elektronik
Nyckelord:
Embedded software, Defect inflow, Software reliability growth models, ERROR-DETECTION, SYSTEMS, Computer Science, Software Engineering, Computer Science
Postens nummer:
207346
Posten skapad:
2014-12-04 12:55
Posten ändrad:
2016-09-07 16:03

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007