transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Integration of Hamiltonian systems with a structure preserving algorithm

Författare och institution:
Sadegh Rahrovani (Institutionen för tillämpad mekanik, Dynamik, Chalmers); Thomas Abrahamsson (Institutionen för tillämpad mekanik, Dynamik, Chalmers); Klas Modin (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
26th International Conference on Noise and Vibration Engineering, ISMA 2014, Including the 5th International Conference on Uncertainty in Structural Dynamics, USD 2014; Leuven; Belgium; 15 September 2014 through 17 September 2014, s. 2915-2929
ISBN:
978-90-73-80291-9
Publikationstyp:
Konferensbidrag, refereegranskat
Publiceringsår:
2014
Språk:
engelska
Sammanfattning (abstract):
The disability of classical general-purpose integrators, such as the Runge-Kutta integrators, to exploit/preserve the structure of the analytical system and the failure of traditional structure-preserving geometric integrators, such as the leapfrog method, in treating highly oscillatory problems has been the main motivation for development of a recently proposed symplectic exponential integrator. Here, the capability of the method in robust simulation of Hamiltonian systems with complex dynamical behaviour, such as the elastic pendulum benchmark, is studied. The method exactly conserves the motion invariants, such as the angular momentum, while approximately conserves the Hamiltonian function. Furthermore, the method performance has been validated for systems with highly oscillatory behavior. These advantages are of particular interest for a variety of problems encountered in mechanical engineering applications, such as simulation of spacecraft structures, rotor blades, and similar systems.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik ->
Numerisk analys
TEKNIK OCH TEKNOLOGIER ->
Maskinteknik ->
Teknisk mekanik
Nyckelord:
structure preserving integrators, Runge-Kutta, leap-frog, Hamiltonian, chaos, spring-pendulum
Chalmers styrkeområden:
Materialvetenskap
Postens nummer:
204572
Posten skapad:
2014-10-20 13:38
Posten ändrad:
2016-05-09 16:36

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007