transparent gif


Ej inloggad.

Göteborgs universitets publikationer

3D Culturing and differentiation of SH-SY5Y neuroblastoma cells on bacterial nanocellulose scaffolds.

Författare och institution:
Marcus Innala (Institutionen för kemi- och bioteknik, Chalmers); Ilse Riebe (Institutionen för neurovetenskap och fysiologi, sektionen för fysiologi); Volodymyr Kuzmenko (Institutionen för mikroteknologi och nanovetenskap, Bionanosystem, Chalmers); Johan Sundberg (Institutionen för kemi- och bioteknik, Polymerteknologi, Chalmers); Paul Gatenholm (Institutionen för kemi- och bioteknik, Polymerteknologi, Chalmers); Eric Hanse (Institutionen för neurovetenskap och fysiologi, sektionen för fysiologi); Sara Johannesson (Institutionen för kemi- och bioteknik, Chalmers)
Publicerad i:
Artificial cells, nanomedicine, and biotechnology (Print), 42 ( 5 ) s. 302-308
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
A new in vitro model, mimicking the complexity of nerve tissue, was developed based on a bacterial nanocellulose (BNC) scaffold that supports 3D culturing of neuronal cells. BNC is extracellularly excreted by Gluconacetobacter xylinus (G. xylinus) in the shape of long non-aggregated nanofibrils. The cellulose network created by G. xylinus has good mechanical properties, 99% water content, and the ability to be shaped into 3D structures by culturing in different molds. Surface modification with trimethyl ammonium beta-hydroxypropyl (TMAHP) to induce a positive surface charge, followed by collagen I coating, has been used to improve cell adhesion, growth, and differentiation on the scaffold. In the present study, we used SH-SY5Y neuroblastoma cells as a neuronal model. These cells attached and proliferated well on the BNC scaffold, as demonstrated by scanning electron microscopy (SEM) and the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) assay. Following neuronal differentiation, we demonstrated functional action potentials (APs) by electrophysiological recordings, indicating the presence of mature neurons on the scaffolds. In conclusion, we have demonstrated for the first time that neurons can attach, proliferate, and differentiate on BNC. This 3D model based on BNC scaffolds could possibly be used for developing in vitro disease models, when combined with human induced pluripotent stem (iPS) cells (derived from diseased patients) for detailed investigations of neurodegenerative disease mechanisms and in the search for new therapeutics.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Medicinska grundvetenskaper
bacterial nanocellulose, neuronal network 3D model, SH-SY5Y cells, scaffolds, surface modification
Postens nummer:
Posten skapad:
2014-01-28 09:13
Posten ändrad:
2016-07-01 11:07

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007