transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

On Convergence of the Streamline Diffusion and Discontinuous Galerkin Methods for the Multi-Dimensional Fermi Pencil Beam Equation

Författare och institution:
Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); E. Kazemi (-)
Publicerad i:
International Journal of Numerical Analysis and Modeling, 10 ( 4 ) s. 860-875
ISSN:
1705-5105
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2013
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We derive error estimates in the L-2 norms, for the streamline diffusion (SD) and discontinuous Galerkin (DG) finite element methods for steady state, energy dependent, Fermi equation in three space dimensions. These estimates yield optimal convergence rates due to the maximal available regularity of the exact solution. Here our focus is on theoretical aspects of the h and hp approximations in both SD and DG settings.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Fermi equation, particle beam, streamline diffusion, discontinuous Galerkin, stability, convergence, FOKKER-PLANCK SYSTEM, ELLIPTIC PROBLEMS, APPROXIMATION, GOND P, 1986, ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, V19, P519
Chalmers fundament:
Grundläggande vetenskaper
Postens nummer:
184678
Posten skapad:
2013-10-04 13:10
Posten ändrad:
2016-07-13 13:59

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007