transparent gif


Ej inloggad.

Göteborgs universitets publikationer

Unfolding dynamics of the mucin SEA domain probed by force spectroscopy suggest that it acts as a cell-protective device.

Författare och institution:
Thaher Pelaseyed (Institutionen för biomedicin, avdelningen för medicinsk kemi och cellbiologi); Michael Zäch (Institutionen för teknisk fysik, Kemisk fysik, Chalmers); Asa C Petersson (Institutionen för biomedicin, avdelningen för medicinsk kemi och cellbiologi); Frida Svensson (Institutionen för biomedicin, avdelningen för medicinsk kemi och cellbiologi); Denny G A Johansson (Institutionen för biomedicin, avdelningen för medicinsk kemi och cellbiologi); Gunnar C. Hansson (Institutionen för biomedicin, avdelningen för medicinsk kemi och cellbiologi)
Publicerad i:
The FEBS journal, 280 ( 6 ) s. 1491-501
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
MUC1 and other membrane-associated mucins harbor long, up to 1 μm, extended highly glycosylated mucin domains and sea urchin sperm protein, enterokinase and agrin (SEA) domains situated on their extracellular parts. These mucins line luminal tracts and organs, and are anchored to the apical cell membrane by a transmembrane domain. The SEA domain is highly conserved and undergoes a molecular strain-dependent autocatalytic cleavage during folding in the endoplasmic reticulum, a process required for apical plasma membrane expression. To date, no specific function has been designated for the SEA domain. Here, we constructed a recombinant protein consisting of three SEA domains in tandem and used force spectroscopy to assess the dissociation force required to unfold individual, folded SEA domains. Force-distance curves revealed three peaks, each representing unfolding of a single SEA domain. Fitting the observed unfolding events to a worm-like chain model yielded an average contour length of 32 nm per SEA domain. Analysis of forces applied on the recombinant protein revealed an average unfolding force of 168 pN for each SEA domain at a loading rate of 25 nN·s(-1). Thus, the SEA domain may act as a breaking point that can dissociate before the plasma membrane is breached when mechanical forces are applied to cell surfaces.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Medicinska grundvetenskaper
Animals, Biomechanics, CHO Cells, Cell Membrane, chemistry, Cricetinae, Enzyme-Linked Immunosorbent Assay, Microscopy, Atomic Force, methods, Models, Molecular, Mucin-1, chemistry, genetics, Mutagenesis, Site-Directed, Protein Conformation, Protein Stability, Protein Structure, Tertiary, Protein Unfolding, Proteolysis, Recombinant Proteins, chemistry, genetics, Stress, Mechanical, Temperature, Transfection
Postens nummer:
Posten skapad:
2013-08-13 17:35

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007