transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Error distributions for random grid approximations of multidimensional stochastic integrals

Författare och institution:
Carl Lindberg (Institutionen för matematiska vetenskaper, matematisk statistik, Chalmers/GU); Holger Rootzén (Institutionen för matematiska vetenskaper, matematisk statistik, Chalmers/GU)
Publicerad i:
The Annals of Applied Probability, 23 ( 2 ) s. 834-857
ISSN:
1050-5164
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2013
Språk:
engelska
Fulltextlänk:
Fulltextlänk (lokalt arkiv):
Sammanfattning (abstract):
This paper proves joint convergence of the approximation error for several stochastic integrals with respect to local Brownian semimartingales, for nonequidistant and random grids. The conditions needed for convergence are that the Lebesgue integrals of the integrands tend uniformly to zero and that the squared variation and covariation processes converge. The paper also provides tools which simplify checking these conditions and which extend the range for the results. These results are used to prove an explicit limit theorem for random grid approximations of integrals based on solutions of multidimensional SDEs, and to find ways to "design" and optimize the distribution of the approximation error. As examples we briefly discuss strategies for discrete option hedging.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Approximation error, random grid, joint weak convergence, multidimensional stochastic differential, differential-equations, weak-convergence, limit-theorems
Postens nummer:
175362
Posten skapad:
2013-04-05 10:14
Posten ändrad:
2016-08-22 09:28

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007