transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Discontinuous Galerkin and multiscale variational schemes for a coupled damped nonlinear system of Schrödinger equations

Författare och institution:
Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); D. Rostamy (-); F. Zabihi (-)
Publicerad i:
Numerical Methods for Partial Differential Equations, 29 ( 6 ) s. 1912-1945
ISSN:
0749-159X
E-ISSN:
1098-2426
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2013
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
In this article, we study a streamline diffusion-based discontinuous Galerkin approximation for the numerical solution of a coupled nonlinear system of Schrödinger equations and extend the resulting method to a multiscale variational scheme. We prove stability estimates and derive optimal convergence rates due to the maximal available regularity of the exact solution. In the weak formulation, to make the underlying bilinear form coercive, it was necessary to supply the equation system with an artificial viscosity term with a small coefficient of order proportional to a power of mesh size. We justify the theory by implementing an example of an application of the time-dependent Schrödinger equation in the coupled ultrafast laser.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
coupled nonlinear Schrödinger equations, multiscale variational scheme, discontinuous Galerkin method, streamline diffusion method, stability, convergence
Postens nummer:
171318
Posten skapad:
2013-01-17 18:45
Posten ändrad:
2016-07-13 13:58

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007