transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Homogenization of Steklov spectral problems with indefinite density function in perforated domains

Författare och institution:
Hermann Douanla (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Acta Applicandae Mathematicae - An International Survey Journal on Applying Mathematics and Mathematical Applications, 123 ( 1 ) s. 261–284
ISSN:
0167-8019
E-ISSN:
1572-9036
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2013
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
The asymptotic behavior of second order self-adjoint elliptic Steklov eigenvalue problems with periodic rapidly oscillating coefficients and with indefinite (sign-changing) density function is investigated in periodically perforated domains. We prove that the spectrum of this problem is discrete and consists of two sequences, one tending to −∞ and another to +∞. The limiting behavior of positive and negative eigencouples depends crucially on whether the average of the weight over the surface of the reference hole is positive, negative or equal to zero. By means of the two-scale convergence method, we investigate all three cases.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Matematisk analys
Nyckelord:
Homogenization, Eigenvalue problems, Perforated domains, Indefinite weight function, Two-scale convergence
Postens nummer:
168265
Posten skapad:
2012-12-19 13:58
Posten ändrad:
2016-07-07 15:34

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007