transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Sharp Asymptotics for Toeplitz Determinants and Convergence Towards the Gaussian Free Field on Riemann Surfaces

Författare och institution:
Robert Berman (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
International Mathematics Research Notices, ( 22 ) s. 5031-5062
ISSN:
1073-7928
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2012
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We consider canonical determinantal random point processes with N particles on a compact Riemann surface X defined with respect to the constant curvature metric. We establish strong exponential concentration of measure type properties involving Dirichlet norms of linear statistics. This gives an optimal central limit theorem (CLT), saying that the fluctuations of the corresponding empirical measures converge, in the large N limit, towards the Laplacian of the Gaussian free field on X in the strongest possible sense. The CLT is also shown to be equivalent to a new sharp strong Szego-type theorem for Toeplitz determinants in this context. One of the ingredients in the proofs are new Bergman kernel asymptotics providing exponentially small error terms in a constant curvature setting.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
NATURVETENSKAP ->
Fysik
Nyckelord:
random matrices, positivity, bundles, kernel
Ytterligare information:
Preprint available from: http://arxiv.org/abs/1106.4902
Postens nummer:
168225
Posten skapad:
2012-12-19 09:51
Posten ändrad:
2016-07-14 15:33

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007