transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

A new approximate mathematical model for global convergence for a coefficient inverse problem with backscattering data

Författare och institution:
Larisa Beilina (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); M. V. Klibanov (-)
Publicerad i:
Journal of Inverse and Ill-Posed Problems, 20 ( 4 ) s. 513-565
ISSN:
0928-0219
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2012
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
An approximately globally convergent numerical method for a 3d coefficient inverse problem for a hyperbolic equation with backscattering data is presented. A new approximate mathematical model is presented as well. An approximation is used only on the first iteration and amounts to the truncation of a certain asymptotic series. A significantly new element of the convergence analysis is that the so-called "tail functions" are estimated. Numerical results in 2d and 3d cases are discussed, including the one for a quite heterogeneous medium.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Coefficient inverse problems, approximate global convergence, new approximate mathematical, numerical-method
Postens nummer:
165396
Posten skapad:
2012-11-02 10:40
Posten ändrad:
2016-06-27 14:46

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007