transparent gif


Ej inloggad.

Göteborgs universitets publikationer

A Robustness Approach to Reliability

Författare och institution:
Pär Johannesson (Institutionen för matematiska vetenskaper, Chalmers/GU); Bo Bergman (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling, Chalmers); Thomas Svensson (Institutionen för matematiska vetenskaper, matematisk statistik, Chalmers/GU); Martin Arvidsson (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling, Chalmers); Åke Lönnqvist (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling, Chalmers); Stefano Barone (Institutionen för teknikens ekonomi och organisation, Industriell kvalitetsutveckling, Chalmers); Jacques de Maré (Institutionen för matematiska vetenskaper, matematisk statistik, Chalmers/GU)
Publicerad i:
Quality and Reliability Engineering International, 29 ( 1 ) s. 17–32
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
Reliability of products is here regarded with respect to failure avoidance rather than probability of failure. To avoid failures, we emphasize variation and suggest some powerful tools for handling failures due to variation. Thus, instead of technical calculation of probabilities from data that usually are too weak for correct results, we emphasize the statistical thinking that puts the designers focus on the critical product functions. Making the design insensitive to unavoidable variation is called robust design and is handled by (i) identification and classification of variation, (ii) design of experiments to find robust solutions, and (iii) statistically based estimations of proper safety margins. Extensions of the classical failure mode and effect analysis (FMEA) are presented. The first extension consists of identifying failure modes caused by variation in the traditional bottom–up FMEA analysis. The second variation mode and effect analysis (VMEA) is a top–down analysis, taking the product characteristics as a starting point and analyzing how sensitive these characteristics are to variation. In cases when there is sufficient detailed information of potential failure causes, the VMEA can be applied in its most advanced mode, the probabilistic VMEA. Variation is then measured as statistical standard deviations, and sensitivities are measured as partial derivatives. This method gives the opportunity to dimension tolerances and safety margins to avoid failures caused by both unavoidable variation and lack of knowledge regarding failure processes.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Matematik ->
Sannolikhetsteori och statistik ->
Matematisk statistik
Maskinteknik ->
Annan maskinteknik ->
Övrig industriell teknik och ekonomi
reliability prediction; variation; uncertainty; P-diagram; safety factors
Chalmers fundament:
Grundläggande vetenskaper
Postens nummer:
Posten skapad:
2012-05-24 12:52
Posten ändrad:
2016-07-01 16:20

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007