transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Bounds for maximal functions associated with rotational invariant measures in high dimensions

Författare och institution:
Alberto Criado (-); Peter Sjögren (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Journal of Geometric Analysis, 24 ( 2 ) s. 595-612
ISSN:
1050-6926
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2014
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
ABSTRACT. In recent articles, it was proved that when mu is a finite, radial measure in Rn with a bounded, radially decreasing density, the Lp(mu) norm of the associated maximal operator grows to infinity with the dimension for a small range of values of p near 1. We prove that when mu is Lebesgue measure restricted to the unit ball and p < 2, the Lp operator norms of the maximal operator are unbounded in dimension, even when the action is restricted to radially decreasing functions. In spite of this, this maximal operator admits dimension-free Lp bounds for every p > 2, when restricted to radially decreasing functions. On the other hand, when mu is the Gaussian measure, the Lp operator norms of the maximal operator grow to infinity with the dimension for any finite p > 1, even in the subspace of radially decreasing functions.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Matematisk analys
Nyckelord:
Maximal functions, Radial measures, Dimension free estimates, 42B25
Postens nummer:
148824
Posten skapad:
2011-11-22 12:58
Posten ändrad:
2016-07-13 12:41

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007