transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae

Författare och institution:
Lars-Göran Ottosson (Institutionen för cell- och molekylärbiologi); Katarina Logg (Institutionen för teknisk fysik, Bionanofotonik, Chalmers); Sebastian Ibstedt (Institutionen för cell- och molekylärbiologi); Per Sunnerhagen (Institutionen för cell- och molekylärbiologi); Mikael Käll (Institutionen för teknisk fysik, Bionanofotonik, Chalmers); Anders Blomberg (Institutionen för cell- och molekylärbiologi); Jonas Warringer (Institutionen för cell- och molekylärbiologi)
Publicerad i:
Eukaryotic Cell, 9 ( 10 ) s. 1635-1647
ISSN:
1535-9778
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2010
Språk:
engelska
Fulltextlänk:
Fulltextlänk (lokalt arkiv):
Sammanfattning (abstract):
Despite a century of research and increasing environmental and human health concerns, the mechanistic basis of the toxicity of derivatives of the metalloid tellurium, Te, in particular the oxyanion tellurite, Te(IV), remains unsolved. Here, we provide an unbiased view of the mechanisms of tellurium metabolism in the yeast Saccharomyces cerevisiae by measuring deviations in Te-related traits of a complete collection of gene knockout mutants. Reduction of Te(IV) and intracellular accumulation as metallic tellurium strongly correlated with loss of cellular fitness, suggesting that Te(IV) reduction and toxicity are causally linked. The sulfate assimilation pathway upstream of Met17, in particular, the sulfite reductase and its cofactor siroheme, was shown to be central to tellurite toxicity and its reduction to elemental tellurium. Gene knockout mutants with altered Te(IV) tolerance also showed a similar deviation in tolerance to both selenite and, interestingly, selenomethionine, suggesting that the toxicity of these agents stems from a common mechanism. We also show that Te(IV) reduction and toxicity in yeast is partially mediated via a mitochondrial respiratory mechanism that does not encompass the generation of substantial oxidative stress. The results reported here represent a robust base from which to attack the mechanistic details of Te(IV) toxicity and reduction in a eukaryotic organism.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Biologiska vetenskaper ->
Mikrobiologi
Postens nummer:
133515
Ingår i post nr:
Posten skapad:
2011-01-13 15:21
Posten ändrad:
2016-08-22 10:52

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007