transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Adaptive Hybrid Finite Element/Difference method for Maxwell's equations: an a priory error estimate and efficiency

Författare och institution:
Larisa Beilina (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Applied and Computational Mathematics (ACM), 9 ( 2 ) s. 176-197
ISSN:
1683-3511
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2010
Språk:
engelska
Sammanfattning (abstract):
In this work we extend our previous study where an explicit adaptive hybrid finite element/finite difference method was proposed for the numerical solution of Maxwell's equations in the time domain. Here we derive a priori error estimate in finite element method and present numerical examples where we indicate the rate of convergence of the hybrid method. We compare also hybrid finite element/finite difference method with pure finite element method and show that we devise an optimized method. In our three dimensional computations the hybrid approach is about 3 times faster than a corresponding highly optimized finite element method. We conclude that the hybrid approach may be an important tool to reduce the execution time and memory requirements for large scale computations.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik
Nyckelord:
Adaptive finite element methods; Efficiency; Error estimates; Hybrid finite element/finite difference method; Maxwell's equations; Reliability
Postens nummer:
131091
Posten skapad:
2010-12-16 14:52
Posten ändrad:
2016-07-14 11:13

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007