transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

On discontinuous Galerkin and discrete ordinates approximations for neutron transport equation and the critical eigenvalue.

Författare och institution:
Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); L. Thevenot (-)
Publicerad i:
Nuovo Cimento della Societa Italiana di Fisica C, 33 ( 1 ) s. 21-29
ISSN:
1124-1896
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2010
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
The objective of this paper is to give a mathematical framework for a fully discrete numerical approach for the study of the neutron transport equation in a cylindrical domain (container model,). More specifically, we consider the discontinuous Galerkin (DG) finite element method for spatial approximation of the mono-energetic, critical neutron transport equation in an infinite cylindrical domain ω̃in R3 with a polygonal convex cross-section ω The velocity discretization relies on a special quadrature rule developed to give optimal estimates in discrete ordinate parameters compatible with the quasi-uniform spatial mesh. We use interpolation spaces and derive optimal error estimates, up to maximal available regularity, for the fully discrete scalar flux. Finally we employ a duality argument and prove superconvergence estimates for the critical eigenvalue.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik
Chalmers fundament:
Grundläggande vetenskaper
Postens nummer:
131045
Posten skapad:
2010-12-16 13:19
Posten ändrad:
2016-07-13 14:07

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007