transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Reiterated Homogenization of Linear Eigenvalue Problems in Multiscale Perforated Domains Beyond the Periodic Setting

Författare och institution:
Hermann Douanla (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Nils Svanstedt (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
Communications in Mathematical Analysis, 11 ( 1 ) s. 61-93
ISSN:
1938-9787
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2011
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
Reiterated homogenization of linear elliptic Neuman eigenvalue problems in multiscale perforated domains is considered beyond the periodic setting. The classical periodicity hypothesis on the coefficients of the operator is here substituted on each microscale by an abstract hypothesis covering a large set of concrete behaviors such as the periodicity, the almost periodicity, the weakly almost periodicity and many more besides. Furthermore, the usual double periodicity is generalized by considering a type of structure where the perforations on each scale follow not only the periodic distribution but also more complicated but realistic ones. Our main tool is Nguetseng’s Sigma convergence.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Matematisk analys
Nyckelord:
Reiterated homogenization, ergodic algebra, algebra with mean value, eigenvalue problem, multiscale perforation.
Postens nummer:
125348
Posten skapad:
2010-08-27 18:35
Posten ändrad:
2016-07-21 12:52

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007