transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

A linear nonconforming finite element method for Maxwell's equations in two dimensions. Part I: Frequency domain

Författare och institution:
Peter Hansbo (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Thomas Rylander (Institutionen för signaler och system, Signalbehandling, Chalmers)
Publicerad i:
Journal of Computational Physics, 229 ( 18 ) s. 6534-6547
ISSN:
0021-9991
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2010
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
We suggest a linear nonconforming triangular element for Maxwell’s equations and test it in the context of the vector Helmholtz equation. The element uses discontinuous normal fields and tangential fields with continuity at the midpoint of the element sides, an approximation related to the Crouzeix–Raviart element for Stokes. The element is stabilized using the jump of the tangential fields, giving us a free parameter to decide. We give dispersion relations for different stability parameters and give some numerical examples, where the results converge quadratically with the mesh size for problems with smooth boundaries. The proposed element is free from spurious solutions and, for cavity eigenvalue problems, the eigenfrequencies that correspond to well-resolved eigenmodes are reproduced with the correct multiplicity.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik ->
Numerisk analys
TEKNIK OCH TEKNOLOGIER ->
Elektroteknik och elektronik ->
Annan elektroteknik och elektronik ->
Elektrofysik
Nyckelord:
Maxwell’s equations, Stabilized methods, Finite element, Interior penalty method, Nonconforming method
Postens nummer:
123690
Posten skapad:
2010-07-05 12:41
Posten ändrad:
2016-07-22 16:05

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007