transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D

Författare och institution:
Larisa Beilina (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); M. V. Klibanov (-)
Publicerad i:
Journal of Inverse and Ill-Posed Problems, 18 ( 1 ) s. 85-132
ISSN:
0928-0219
Publikationstyp:
Artikel, refereegranskad vetenskaplig
Publiceringsår:
2010
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
A globally convergent numerical method for a 3-Dimensional Coefficient Inverse Problem for a hyperbolic equation is presented. A new globally convergent theorem is proven. It is shown that this technique provides a good first guess for the Finite Element Adaptive method (adaptivity) method. This leads to a synthesis of both approaches. Numerical results are presented.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Nyckelord:
Two-stage numerical procedure, globally convergent numerical method, adaptive finite element method, SCATTERING, RECONSTRUCTION
Postens nummer:
122453
Posten skapad:
2010-06-08 11:34
Posten ändrad:
2016-07-14 11:10

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007