transparent gif


Ej inloggad.

Göteborgs universitets publikationer

Bergman kernels and equilibrium measures for polarized pseudoconcave domains

Författare och institution:
Robert Berman (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
International Journal of Mathematics, 21 ( 1 ) s. 77-115
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
Let X be a domain in a closed polarized complex manifold (Y, L), where L is a (semi-) positive line bundle over Y. Any given Hermitian metric on L induces by restriction to X a Hilbert space structure on the space of global holomorphic sections on Y with values in the k-th tensor power of L (also using a volume form omega(n) on X). In this paper the leading large k asymptotics for the corresponding Bergman kernels and metrics are obtained in the case when X is a pseudo-concave domain with smooth boundary (under a certain compatibility assumption). The asymptotics are expressed in terms of the curvature of L and the boundary of X. The convergence of the Bergman metrics is obtained in a more general setting where (X, omega(n)) is replaced by any measure satisfying a Bernstein-Markov property. As an application the (generalized) equilibrium measure of the polarized pseudo-concave domain X is computed explicitly. Applications to the zero and mass distribution of random holomorphic sections and the eigenvalue distribution of Toeplitz operators will be described elsewhere.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Chalmers fundament:
Grundläggande vetenskaper
Ytterligare information:
Postens nummer:
Posten skapad:
2010-02-19 13:22
Posten ändrad:
2016-08-16 09:41

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007