transparent gif


Ej inloggad.

Göteborgs universitets publikationer

Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites.

Författare och institution:
E Katsivela (-); Edward R.B. Moore (Institutionen för laboratoriemedicin, Avdelningen för klinisk bakteriologi); D Maroukli (-); C Strömpl (-); D Pieper (-); N Kalogerakis (-)
Publicerad i:
Biodegradation, 16 ( 2 ) s. 169-80
Artikel, refereegranskad vetenskaplig
Sammanfattning (abstract):
In-situ bioremediation of petroleum waste sludge in landfarming sites of Motor Oil Hellas (petroleum refinery) was studied by monitoring the changes of the petroleum composition of the waste sludge, as well as the changes in the structure of the microbial community, for a time period of 14 months. The analyses indicated an enhanced degradation of the petroleum hydrocarbons in the landfarming areas. A depletion of n-alkanes of approximately 75-100% was obtained. Marked changes of the microbial communities of the landfarms occurred concomitantly with the degradation of the petroleum hydrocarbons. The results obtained from terminal restriction fragment length polymorphism (T-RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rRNA genes demonstrated that bacteria originating from the refinery waste sludge and newly selected bacteria dominated the soil bacterial community during the period of the highest degradation activity. However, the diversity of the microbial community was decreased with increased degradation of the petroleum hydrocarbons contained in the landfarms. T-RFLP fingerprints of bacteria of the genera Enterobacter and Ochrobactrum were detected in the landfarmed soil over the entire treatment period of 14 months. In contrast, the genus Alcaligenes appeared in significant numbers only within the 10 month old landfarmed soil. Genes encoding catechol 2,3-dioxygenase (subfamily I.2.A) were detected only in DNA of the untreated refinery waste sludge. However, none of the genes known to encode the enzymes alkane hydroxylase AlkB, catechol 2,3-dioxygenase (subfamily I.2.A) and naphthalene dioxygenase nahAc could be detected in DNA of the landfarmed soils.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
Biologiska vetenskaper ->
Alkane 1-Monooxygenase, genetics, Biodegradation, Environmental, Catechol 2,3-Dioxygenase, Dioxygenases, genetics, Enterobacter, genetics, isolation & purification, Hydrocarbons, metabolism, Kinetics, Multienzyme Complexes, genetics, Ochrobactrum, genetics, isolation & purification, Oxygenases, genetics, Petroleum, metabolism, Polymerase Chain Reaction, methods, RNA, Ribosomal, 16S, analysis, genetics, Soil Microbiology, Soil Pollutants, metabolism, Waste Disposal, Fluid
Postens nummer:
Posten skapad:
2010-01-21 21:01

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007