transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

Fekete points and convergence towards equilibrium measures on complex manifolds

Författare och institution:
Robert Berman (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU); Sebastien Boucksom (-); David Witt Nyström (Institutionen för matematiska vetenskaper, Chalmers/GU)
Publicerad i:
Acta Mathematica, 207 ( 1 ) s. 1-27
ISSN:
1871-2509
Publikationstyp:
Artikel, övrig vetenskaplig
Publiceringsår:
2011
Språk:
engelska
Fulltextlänk:
Sammanfattning (abstract):
Building on the first two authors' previous results, we prove a general criterion for convergence of (possibly singular) Bergman measures towards equilibrium measures on complex manifolds. The criterion may be formulated in terms of growth properties of balls of holomorphic sections, or equivalently as an asymptotic minimization of generalized Donaldson L-functionals. Our result yields in particular the proof of a well-known conjecture in pluripotential theory concerning the equidistribution of Fekete points, and it also gives the convergence of Bergman measures towards equilibrium for Bernstein-Markov measures. Applications to interpolation of holomorphic sections are also discussed.
Länk till sammanfattning (abstract):
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik
Chalmers fundament:
Grundläggande vetenskaper
Postens nummer:
105639
Posten skapad:
2010-01-07 10:47
Posten ändrad:
2016-07-14 15:35

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007