transparent gif

 

Ej inloggad.

Göteborgs universitets publikationer

On convergence of a h-p Streamline Diffusion and Discontinuous Galerkin Methods for the Vlasov-Poisson-Fokker-Planck System

Författare och institution:
Mohammad Asadzadeh (Institutionen för matematiska vetenskaper, matematik, Chalmers/GU)
Publicerad i:
26th International Symposium on Rarefied Gas Dynamics, RGD26; Kyoto; Japan; 20 July 2008 through 25 July 2008, 1084 s. 99-104
ISSN:
0094243X
Publikationstyp:
Konferensbidrag, refereegranskat
Publiceringsår:
2009
Språk:
engelska
Sammanfattning (abstract):
In this paper we investigate the basic ingredients for global superconvergence strategy of streamline diffusion (SD) and discontinuous Galerkin (DG) finite element approximations in $H^{1}$ and $W^{1,\infty}$-norms (see \cite{Adams:75}) for the solution of the Vlasov--Poisson--Fokker--Planck system. This study is an extension of the results in \cite{Asadzadeh:90}-\cite{Asadzadeh.Sopasakis:2007}, to finite element schemes including discretizations of the Poisson term, where we also introduce results of an extension of the $h$-versions of SD and DG to the corresponding $hp$-versions. Optimal convergence results presented in the paper relay on the estimates for the regularized Green's functions with memory terms where some interpolation postprocessing techniques play important roles, see \cite{Baouendi.Grisvard:86}.
Ämne (baseras på Högskoleverkets indelning av forskningsämnen):
NATURVETENSKAP ->
Matematik ->
Beräkningsmatematik ->
Tillämpad matematik
Nyckelord:
Vlasov-Poisson-Fokker-Planck system, streamline diffusion method, discontinuous Galerkin method.
Postens nummer:
103187
Posten skapad:
2009-12-09 15:02
Posten ändrad:
2016-07-13 14:10

Visa i Endnote-format

Göteborgs universitet • Tel. 031-786 0000
© Göteborgs universitet 2007